New Technique for Initialization of Centres in TSK Clustering-Based Fuzzy Systems
نویسندگان
چکیده
Several methodologies for function approximation using TSK systems make use of clustering techniques to place the rules in the input space. Nevertheless classical clustering algorithms are more related to unsupervised learning and thus the output of the training data is not taken into account or, simply the characteristics of the function approximation problem are not considered. In this paper we propose a new approach for the initialization of centres in clustering-based TSK systems for function approximation that takes into account the expected output error distribution in the input space to place the fuzzy system rule centres. The convenience of proposed the algorithm comparing to other input clustering and input/output clustering techniques is shown through a significant example.
منابع مشابه
Enhanced Ant Colony Optimization with Dynamic Mutation and Ad Hoc Initialization for Improving the Design of TSK-Type Fuzzy System
This paper proposes an enhanced ant colony optimization with dynamic mutation and ad hoc initialization, ACODM-I, for improving the accuracy of Takagi-Sugeno-Kang- (TSK-) type fuzzy systems design. Instead of the generic initialization usually used in most population-based algorithms, ACODM-I proposes an ad hoc application-specific initialization for generating the initial ant solutions to impr...
متن کاملRobust TSK fuzzy modeling for function approximation with outliers
The Takagi–Sugeno–Kang (TSK) type of fuzzy models has attracted a great attention of the fuzzy modeling community due to their good performance in various applications. Various approaches for modeling TSK fuzzy rules have been proposed in the literature. Most of them define their fuzzy subspaces based on the idea of training data being close enough instead of having similar functions. Besides, ...
متن کاملProposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms
In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...
متن کاملDependence of Two Different Fuzzy Clustering Techniques on Random Initialization and a Comparison
In the recent past Kernelized Fuzzy C-Means clustering technique has earned popularity especially in the machine learning community. This technique has been derived from the conventional Fuzzy C-Means clustering technique of Bezdek by defining the vector norm with the Gaussian Radial Basic Function instead of a Euclidean distance. Subsequently the fuzzy cluster centroids and the partition matri...
متن کاملComparison Between Unsupervised and Supervise Fuzzy Clustering Method in Interactive Mode to Obtain the Best Result for Extract Subtle Patterns from Seismic Facies Maps
Pattern recognition on seismic data is a useful technique for generating seismic facies maps that capture changes in the geological depositional setting. Seismic facies analysis can be performed using the supervised and unsupervised pattern recognition methods. Each of these methods has its own advantages and disadvantages. In this paper, we compared and evaluated the capability of two unsuperv...
متن کامل